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Problem Solutions - Day 2

Building Bridges
Tomaž Hočevar

Let’s first slightly change the problem to focus only on the pillars that support the bridge and not
the other ones which should be destroyed. The overall cost consists of the cost due to differences in
heights plus the cost of destroying unused pillars. The latter one is equal to the sum of all destruction
cost minus the cost of those that are retained.

Dynamic programming. Consider a subproblem of building the bridges such that the last one
ends on pillar i. Let f(i) represent the minimum cost of solving this subproblem. The last bridge in
the solution will span from some pillar j < i to i, which results in the formula:

f(1) =− w1

f(i) =min
j<i

(
f(j) + (hj − hi)

2 − wi

)
A dynamic programming solution has to solve O(n) subproblems, spending O(n) time on each.

Two pillars. Can we do better if we know that the optimal solution consists only of two additional
pillars besides the first and the last? If there’s only one additional pillar, we can simply try them all.
For the case of two additional pillars, we’ll try all second pillars i and for each of them choose an
optimal first pillar j.

The contribution of the first pillar to the overall cost is (h1 − hj)
2 + (hj − hi)

2 − wj . Let’s ignore
wj for now (assume wj = 0). Intuitively, we would want to choose hj close to the average of h1 and
hi. Calculating where derivative equals zero confirms our intuition. Therefore, we are interested in
only two pillars — the largest among those smaller or equal to (h1 + hi)/2 and the smallest among
those larger. As we try different pillars i from 1 to n, we can maintain a tree structure of pillars j < i
ordered by their height. This allows us to find the two we need in O(log n). For example, we can use
the set data structure from C++ for this purpose.

All that’s left is to handle the term wj . Their limited range of values is helpful in this case. We
can maintain separate tree structures for every value of wj and look for the optimal pillar j for every
possible value of wj . The time complexity is O(na log n), a = max |wi|.

Convex optimization. Let’s rewrite the recursive definition from the dynamic programming
solution.

f(i) = min
j<i

(A(j) · hi +B(j) + C(i))

A(j) = −2hj B(j) = h2
j + f(j) C(i) = h2

i − wi

Note that C is a constant term that depends only on i and is the same regardless of the choice of j. If
the term A(j) ·hi weren’t present, we could simply maintain the best choice of j as we compute values
of f(i) for increasing i. Term hi in the product complicates things. We can consider every pair A(j)
and B(j) as a slope and y-intercept of a line. The problem of finding the best j reduces to finding
the lowest line at x = hi. To do this in O(log n) we’ll maintain a lower envelope of a set of lines. The
data structure has to be dynamic — it should support insertion of a new line in O(log n). Note that
the lines comprising the lower envelope are ordered by their slope. Therefore, we can maintain a tree
structure of these line segments. It allows us to quickly find the optimal line for a given x as well
as insert a new one. We can abuse C++’s set for this purpose. This optimization is often called the
convex hull trick in relation to dynamic programming and solves the problem in O(n log n) time.
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Chase
Vid Kocijan

What is the maximal difference in number of pigeons we can make by dropping some breadcrumbs
while running through the park? It is obvious from description that park represents a tree where each
statue is a node and each path is an edge.

Exhaustive search. The tree has O(n2) possible paths in it, each determined by its beginning
and end. On a path we have O(2n) possible ways to drop the crumbs. The exhaustive search can
simulate all the possible strategies in O(n2 · 2n) time complexity.

Greedy approach. To approach the problem better, we must first make some observations. Let
us say Jerry is currently stationed in node v and arrived here from node t. Jerry will visit node w
in the next step. Let us denote N(v) =

∑
(v,x)∈E px number of pigeons in all the neighbours of the

node v. The gain g(v) from dropping a breadcrumb is g(v) = N(v)− pt regardless of where the other
breadcrumbs were dropped.

If a node x is neighbour to the v and w ̸= x ̸= t, the observation is quite straightforward. If we
drop the breadcrumb at node v, px pigeons will be added to the path Tom traverses, otherwise not.
Pigeons from node t do not affect Jerry’s path, nor do they affect Tom’s path. Jerry already met
them once (and won’t meet them again, even if they moved to node v) and Tom will only meet them
once regardless of their position. Pigeons from node w move to node v, which means they won’t count
toward a total number of pigeons Jerry met. They will count towards the total number of pigeons
Tom met. The values px that counted toward gain g(v) have not been changed from the start. Jerry
has not yet reached these nodes or any of their neighbours. Hence the gain of dropping a breadcrumb
at a node v only depends on the last visited node.

If the starting node of a walk is known in advance, all the gains g(v) can be calculated in advance.
Now all we have to do is determine an ending point in such way, that sum of top v gains will be
maximal. This can be done with a depth first search by storing all the gains on the current path in
priority queue and selecting top v. This approach takes O(n · v · log(v)) time if we know the starting
node or O(n2 · v · log(v)) if we have to try every possible initial node.

Dynamic programming. Let us root the tree in node i. Let us denote c[i][j] maximal difference
we can make by starting a path in node i and continuing in one of its subtrees, dropping at most j
breadcrumbs in the subtree. Let us denote b[i][j] maximal difference we can make by starting a path
in a subtree of a node i and ending it in i, dropping at most j breadcrumbs in subtree or at node
i. Values of these two can easily be computed from values of b and c of i-th children. k denotes the
children of node i.

c[i][0] =0

c[i][j] =max
k

(c[k][j], c[k][j − 1] + g(k)− pi)

b[i][0] =0

b[i][j] =max
k

(b[k][j], b[k][j − 1] + g[i]− pk)

The best path running through node i and its subtrees makes the difference maxvj=1 b[i][j]+c[k][v−
j]. Note that path must not begin and end in the same subtree. A way to achieve this is to temporarily
store the best two values for each possible b[i][j], c[i][j] and in which subtree that path started/ended.
The best solution which does not use the same subtree twice can be easily calculated from these. This
approach takes O(n · v) time.

Palindromic Partitions
Mitja Trampuš
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Let us think about the problem of creating an optimal (i.e. longest) chunking in terms of an
iterative process of chipping off equal-sized chunks from both sides of the input string s.

Exhaustive search. How large should these chipped-off prefixes and suffixes be at each step?
Naively, we can try chipping off every possible length k, then recursively figure out the optimal chunking
for the remainder:

solution(s) = max
k∈1..|n|/2

{
2 + solution(s[k : −k]), if s[: k] = s[−k :]

1, otherwise

The expression above uses python-like notation: s[: k] is the prefix of length k of s, s[−k :] is the
suffix, and s[k : −k] is everything but the prefix and suffix.

Dynamic programming. This solution takes time exponential in the length of the string, and
will only solve the easiest set of inputs. However, note that the input to solution() is fully defined
just by its length. It follows that there are only O(n) possible different calls to solution(), and also
that we can pass that length, rather than the actual substring of s, to solution(). If we memoize
the function outputs, this results in a O(n3) runtime. This (or the equivalent dynamic programming
solution without memoization) solves the first two sets of inputs.

Greedy. We do not have to consider all values of k, however. A greedy approach, always chipping
off the smallest possible chunk, gives optimal results. Let us sketch the proof (in the interest of space,
notation is not fully formal).

Without loss of generality, assume that the greedy algorithm and the optimal algorithm differ in
the first chunk they chip off the input string s: the greedy algorithm selects a chunk C, and the optimal
algorithm selects a strictly larger chunk C∗, |C∗| > |C0|. Let us denote the prefix/suffix as C∗ = CA
and C∗ = BC:

We consider two cases:

1. |B| ≥ |C|.

s = C∗ S′ (i.e. remainder of s) C∗

= C A S′ (i.e. remainder of s) B C

Equating CA = BC gives us C∗ = CXC, where X is possibly an empty string. So chunking the
prefix/suffix C∗ as (C)(X)(C) yields a longer palindrome than the ”optimal” chunking of (C∗).
Contradiction.

2. |B| < |C|.

s = C∗ S′ (i.e. remainder of s) C∗

= C A S′ (i.e. remainder of s) B C

Equating CA = BC and taking into account |B| < |C| gives us C = BC(1) for some prefix C(1)

of C; note that C(1) is both a prefix and a suffix of C. We can keep applying the same logic to
get C = BC(1) = BBC(2) = BBBC(3) = . . . = BB . . . BBC(k), until |C(k)| ≤ |B|. C(k) is both
a prefix and a suffix of C (by the same logic that C(1) was), and thus of C∗. This prefix and
suffix do not overlap, because |C(k)| ≤ |B| < |C|/2 < |C∗|/2. So C∗ can be written as C(k)XC(k)

for some X, and could be chunked more finely. Contradiction as in case 1.

Since both cases lead to a contradiction, we conclude that the greedy solution is optimal.
A straightforward implementation of the greedy approach solves the first three sets of inputs. It

still takes O(n2) time because the string equality test (to determine whether a chunk of size k can be
chipped off) takes O(n).

Rolling hashes. As a final optimization step, we can speed up string comparison using rolling
hashes. Let us denote the ASCII value of a character c with A(c), and choose a prime p larger
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than A(z), e.g. p = 131. We can then define the hash of a sequence of characters c0c1 · · · cm as
h(c1c2 · · · cm) =

∑m
i=0 A(ci)p

i mod M , where M is another suitably large prime. As we grow our
candidate prefix and suffix, looking for the first matching pair, we only perform the expensive string
comparison when the hash values of the prefix and the suffix match. These hash values can be updated
in O(1) for each additional character, and strings can be compared in approximately O(1) (neglecting
the cases where hash comparison yields a false positive), thus roughly O(n) for the input overall.

Deterministic time complexity. A greedy solution with naive string equality testing is not that
bad as long as the chunks are small enough. On the other hand, we could process the entire remaining
string to find the smallest chunk in O(n). We can use the z-algorithm or KMP’s failure function for
this purpose. But that would again waste a lot of time if the smallest chunk turns out to be small.
However, we can make a compromise. Choose a length threshold t and use naive equality testing
for k < t. If that doesn’t yield a solution, process the entire string. Worst case time complexity is
O((k2 + n)nk ). Choosing k =

√
n gives a O(n1.5) solution.

A deterministic linear-time solution also exists, although we are not aware of one that is practical
to implement in a contest. Let us build a suffix array a and store for every suffix s[i :] its index
p[i] in the suffix array. Assume that we have already chipped off i characters on each side of s, and
that we are trying to determine if k is a good size for the next prefix and suffix; in other words, if
s[i : i+ k] = s[n− i− k : n− i]. The size of a chunk k defines a range a[l] . . . a[r] of relevant suffixes in
the suffix array and k is a good size exactly when l ≤ p[n− i− k] ≤ r. The bottleneck of this solution
is in adjusting the bounds of the range l and r when increasing k. Building a suffix tree to traverse
and determine bounds l and r instead of binary searching over a suffix array leads to a linear-time
solution.
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