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Marcin Kubica, Jakub Radoszewski

Preface

Central European Olympiad in Informatics (CEOI) gathers the best
teen-age programmers from several European countries. The 18-th
CEOI was held at Pomeranian Science and Technology Park (PPNT)
in Gdynia, Poland between July 7 and July 12, 2011. It was
organized by Polish Olympiad in Informatics and Association Talent,
together with: Polish Ministry of National Education, Foundation
for Information Technology Development and Institute of Informatics,
University of Warsaw. City of Gdynia and Polish Foundation for
Computer Education have also supported organization of this event.

Nine countries took part in the competition: Croatia, Czech
Republic, Germany, Hungary, Poland, Romania, Slovakia, Slovenia
and Switzerland. All of the countries, except Poland, were rep-
resented by 4 contestants. Poland was represented by the �rst
team and the second team, each consisting of 4 contestants. More
information about the rules of the competition can be found at
http://ceoi2011.mimuw.edu.pl. The medalists of CEOI 2011 are
as follows:

Gold medalists:

Krzysztof Pszeniczny (Poland)
Jan Kanty Milczek (Poland)
Ivan Katanic (Croatia)
Piotr Bejda (Poland)
Matej Vecerik (Slovakia)

Silver medalists:

Wiktor Kuropatwa (Poland)
Krzysztof Leszczy«ski (Poland)
Matija Milisic (Croatia)
Adrian Bud u (Romania)
Marian Hornak (Slovakia)
Klemen Kloboves (Slovenia)
Radu �tefan Voroneanu (Romania)

Bronze medalists:

Alexandru George Cazacu (Romania)
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Matjaº Leonardis (Slovenia)
�ukasz Jocz (Poland)
Tobias Lenz (Germany)
Vlad Alexandru Gavril  (Romania)
Marcin Smulewicz (Poland)
Mateusz Kope¢ (Poland)
Zoltán Szenczi (Hungary)
Gellért Weisz (Hungary)
Martin Zikmund (Czech Republic)
Marco Keller (Switzerland)
Patrick Klitzke (Germany)
Andrej Maris (Slovakia)

In parallel to the onsite competition, an online contest with exactly
the same tasks and test data was held. It gathered about 200
competitors. The top 3 places in the contest were taken by Gennady
Korotkevich (who got a perfect score), Erjin Zhou and Yiqin Lu.

The contest consisted of three sessions: a practice session followed
by two competition sessions. During the practice session contestants
had an occasion to become familiar with the software environment and
to solve a practice task Similarity. During each of the competition
sessions they had to solve three tasks within �ve hours of time:
Balloons, Matching and Treasure Hunt during the �rst session, and
Hotel, Teams and Tra�c during the second one.

This booklet presents tasks from CEOI'2011 together with the
discussion of their solutions. It was prepared with hope that it
will help participants of various programming contests in their train-
ing. More materials, including test data used during the evalua-
tion, can be found at http://ceoi2011.mimuw.edu.pl. Automated
evaluation of solutions of the tasks from the contest is available at
http://main.edu.pl/en/archive/ceoi/2011.

Marcin Kubica Jakub Radoszewski
chair of CEOI'2011
Steering Committee

chair of CEOI'2011
Scienti�c Committee



Jakub Pachocki, Karol Pokorski
Task idea and formulation

Karol Pokorski
Analysis

CEOI’2011, Day 0, 8.07.2011. Available memory: 32 MB

Similarity

Byteman works in a computational biology research team in Gdynia. He is
a computer scientist, though, and his work is mainly concentrated on designing
algorithms related to strings, patterns, texts etc. His current assignment is to
prepare a tool for computing the similarity of a pattern and a text.

Given a pattern and a text, one can align them in many different ways, so
that each letter of the pattern has a corresponding letter in the text. Here we
only consider alignments without holes, in which the pattern is matched against
a consecutive part of the text of length equal to the length of the pattern. For
any such alignment, one can count the positions where the letter of the pattern
is the same as the corresponding letter of the text. The sum of such numbers
is called the similarity of the pattern and the text. The table below illustrates
the computation of the similarity between an example pattern abaab and the
text aababacab.

Matched letters:

Text: aababacab aababacab

Pattern: abaab a..ab (3)
abaab aba.. (3)
abaab ...a. (1)
abaab aba.. (3)
abaab ...ab (2)

Similarity: 12

Byteman has already managed to implement the graphical interface of the tool.
Could you help him in writing the piece of software responsible for computing
the similarity?

Input

The standard input consists of two lines. The first line contains a non-empty
string composed of small English letters — the pattern. The second line
contains a non-empty string composed of small English letters — the text.
You may assume that the length of the pattern does not exceed the length of
the text. The text contains no more than 2 000 000 letters.
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Additionally, in test cases worth 30 points the length of the text does not
exceed 5 000 .

Output

The only line of the standard output should contain the similarity of the given
pattern and the text.

Example

For the input data:
abaab
aababacab

the correct result is:
12

Explanation. The example above is the same as in the task description.

Solution

In this task we are to compute the similarity of given patterns and
texts e�ciently. What is the similarity? Assume that p is the pattern
and t is the text. Let n be the length of the pattern and m be the
length of the text. There are m − n + 1 possible correct alignments
of the pattern with the text, so that the pattern �ts within the text.
Assume that the �rst letter of the pattern is aligned with the i-th letter
of the text. Then we compute the number of such j = 1, 2, . . . , n that
p[j] = t[i + j − 1]. The similarity equals the sum of such numbers for
each i = 1, 2, . . . ,m− n + 1.

Naive solution

The �rst approach is to apply the above de�nition directly. We test all
possible values of i and for each of them consider all the possible values
of j. If the letters are the same, we simply increment the result by one.

This solution runs in O(n ·m) time and is worth 30 points, as stated
in the task statement.
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Model solution

To improve the time complexity of the solution, one should look at
this problem from a di�erent perspective. If we were to compute all
the partial values, that is, the numbers of equal letters for each of the
possible m− n + 1 alignments, this problem would be much harder to
solve1. Since we are requested only to �nd the sum of such values, we
can change the order of the sum.

Instead of counting corresponding equal letters for each alignment
of the pattern and the text, we will count, for each position i of the text,
the number of alignments in which the i-th letter of the text matches
the corresponding letter of the pattern. If not for the condition that for
each alignment the pattern must �t within the text, this value would
be equal to the number of occurrences of the letter t[i] in p. To take
the aforementioned condition into account, for the i-th letter of the
text, i = 1, 2, . . . , n − 1, we may only consider the �rst i positions
of the pattern. Similarly, for the (m − i + 1)-th letter of the text,
i = 1, 2, . . . , n − 1, we may only consider the last i positions of the
pattern.

To implement this approach e�ciently, we consider the letters of
the text from left to right and use an auxiliary array a, in which for
each letter of the alphabet ′a′. .′ z′ we store the count of this letter
at signi�cant positions of the pattern. The whole algorithm can be
written as follows:

1: t[′a′. .′ z′] := (0, 0, . . . , 0);
2: similarity := 0;
3: for i := 1 to m do begin

4: if i 6 n then a[p[i]] := a[p[i]] + 1;
5: similarity := similarity + a[t[i]];
6: if i > m− n + 1 then a[p[n + i−m]] := a[p[n + i−m]]− 1;
7: end

8: return similarity ;

1One could use the so called fast Fourier transform (FFT) to solve this variant
of the task in O(m log m · A) time, where A is the size of the alphabet. We omit
the details.
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This solution runs in O(m) time. It could also be implemented less
carefully in O(m log m) time or O(m · A) time, where A is the size of
the alphabet (here A = 26).

Possible errors

One of the possible errors one could make in the above solution is to
use a 32-bit integer type to store the result. Note that the result could
be quite big (consider a pattern consisting of one million letters a and
a text consisting of two million letters a), a 64-bit integer is required
to store it.



Jakub Pachocki
Task idea and formulation

Jakub Pachocki
Analysis

CEOI 2011, Day 1, 9.07.2011. Available memory: 64 MB

Balloons

The organizers of CEOI 2011 are planning to hold a party with lots of balloons.
There will be n balloons, all sphere-shaped and lying in a line on the floor.

The balloons are yet to be inflated, and each of them initially has zero
radius. Additionally, the i-th balloon is permanently attached to the floor at
coordinate xi. They are going to be inflated sequentially, from left to right.
When a balloon is inflated, its radius is increased continuously until it reaches
the upper bound for the balloon, ri, or the balloon touches one of the previously
inflated balloons.

Fig. 1: The balloons from the example test, after being fully in�ated.

The organizers would like to estimate how much air will be needed to inflate
all the balloons. You are to find the final radius for each balloon.
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Input

The first line of the standard input contains one integer n (1 6 n 6 200 000 )
— the number of balloons. The next n lines describe the balloons. The i-th of
these lines contains two integers xi and ri (0 6 xi 6 10 9, 1 6 ri 6 10 9).
You may assume that the balloons are given in a strictly increasing order of
the x coordinate.

In test data worth 40 points an additional inequality n 6 2 000 holds.

Output

Your program should output exactly n lines, with the i-th line containing
exactly one number — the radius of the i-th balloon after inflating. Your
answer will be accepted if it differs from the correct one by no more than
0 .001 for each number in the output.

Example

For the input data:
3
0 9
8 1
13 7

the correct result is:
9.000
1.000
4.694

Hint: To output a long double with three decimal places in C/C++ you
may use printf("%.3Lf\n", a); where a is the long double to be printed.
In C++ with streams, you may use cout << fixed << setprecision(3);
before printing with cout << a << "\n"; (and please remember to include
the iomanip header file). In Pascal, you may use writeln(a:0:3); . You
are advised to use the long double type in C/C++ or the extended type in
Pascal, this is due to the greater precision of these types. In particular, in
every considered correct algorithm no rounding errors occur when using these
types.

Solution

The solution to this problem is to simply simulate the process of
in�ating the balloons from left to right. There are two concerns here:
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the �rst one is being able to accurately determine how much can
a balloon be in�ated before it touches another given one, and the second
one is the time complexity of our solution.

Assume we have an already in�ated balloon at position x1, with
radius r1, and we want to in�ate another one, at position x. We need
to determine the maximum radius r at which the second balloon does
not intersect the �rst one (or, equivalently, the only radius at which the
two balloons just touch). This can be done with a simple binary search,
or, alternatively, we can derive an exact expression for r. As the center
of the �rst balloon is at (x1, r1) and the center of the second one is at
(x, r), the distance between the centers is

√
(x1 − x)2 + (r1 − r)2. The

balloons touch if and only if this distance is equal to r1 + r. Therefore,
we must have:

(x1 − x)2 + (r1 − r)2 = (r1 + r)2

(x1 − x)2 = 4r1r

r =
(x1 − x)2

4r1

With geometry accounted for, we can already implement a naive
O(n2) time solution: when in�ating a balloon, check all previously
in�ated ones to determine which one will be touched �rst (take
the minimum of r over all possible (x1, r1) in (1)). The following
observation is the key to arriving at the model O(n) time solution:

Observation 1. When (x1, r1) and (x2, r2) are the centers of two
previously in�ated balloons, with x2 > x1 and r2 > r1, then no balloon
to the right of x2 may touch the �rst one before touching the second
one.

Proof: As x2 > x1, for any x > x2 we have (x1 − x)2 > (x2 − x)2.
This, along with the condition r1 6 r2, concludes that:

(x1 − x)2

4r1
>

(x2 − x)2

4r2

so the second balloon always implies a stronger bound on r in (1). �

Therefore, when in�ating a balloon we only need to consider the
previously in�ated balloons that had no bigger balloon in�ated after
them. Keeping them on a stack enables us to use the following simple
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algorithm to in�ate a balloon at position x, with maximum allowable
radius r:

1: function InflateBalloon(x, r)
2: begin

3: while not stack .empty() do begin

4: (x1, r1) := stack .top();
5: r := min(r, (x1 − x)2/(4r1));
6: if r > r1 then stack .pop()
7: else break;
8: end

9: stack .push((x, r));
10: return r;
11: end

As the balloons are given in an increasing order by the x coordinate,
we can simply invoke this function for every subsequent balloon while
reading the input and print its return value, which is the �nal radius
for the given balloon. As every balloon will be pushed to the stack
exactly once, the total amortized running time of this function is O(1),
and O(n) for the whole program.
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Matching

As a part of a new advertising campaign, a big company in Gdynia wants to
put its logo somewhere in the city. The company is going to spend the whole
advertising budget for this year on the logo, so it has to be really huge. One
of the managers decided to use whole buildings as parts of the logo.

The logo consists of n vertical stripes of different heights. The stripes are
numbered from 1 to n from left to right. The logo is described by a permutation
( s1, s2, . . . , sn) of numbers 1 , 2 , . . . , n. The stripe number s1 is the shortest
one, the stripe number s2 is the second shortest etc., finally the stripe sn is
the tallest one. The actual heights of the stripes do not really matter.

There are m buildings along the main street in Gdynia. To your surprise,
the heights of the buildings are distinct. The problem is to find all positions
where the logo matches the buildings.

Help the company and find all contiguous parts of the sequence of buildings
which match the logo. A contiguous sequence of buildings matches the logo if
the building number s1 within this sequence is the shortest one, the building
number s2 is the second shortest, etc. For example a sequence of buildings of
heights 5 , 10 , 4 matches a logo described by a permutation ( 3 , 1 , 2), since the
building number 3 (of height 4 ) is the shortest one, the building number 1 is
the second shortest and the building number 2 is the tallest.

Input

The first line of the standard input contains two integers n and m
(2 6 n 6 m 6 1 000 000 ). The second line contains n integers si, forming
a permutation of the numbers 1 , 2 , . . . , n. That is, 1 6 si 6 n and si 6= sj
for i 6= j. The third line contains m integers hi — the heights of the buildings
(1 6 hi 6 10 9 for 1 6 i 6 m). All the numbers hi are different. In each
line the integers are separated by single spaces.

Additionally, in test cases worth at least 35 points, n 6 5 000 and
m 6 20 000 , whereas in test cases worth at least 60 points, n 6 50 000
and m 6 200 000 .
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Output

The first line of the standard output should contain an integer k, the number
of matches. The second line should contain k integers — 1-based indices of
buildings which correspond to the stripe number 1 from the logo in a proper
match. The numbers should be listed in an increasing order and separated by
single spaces. If k = 0 , your program should print an empty second line.

Example

For the input data:
5 10
2 1 5 3 4
5 6 3 8 12 7 1 10 11 9
the correct result is:
2
2 6

5
6

3

8

12

7

1

10
11

9

1 2 3 4 5 6 7 8 9 10

Explanation: Both the sequences 6 , 3 , 8 , 12 , 7 and 7 , 1 , 10 , 11 , 9 match
the logo described by the permutation ( 2 , 1 , 5 , 3 , 4). In particular, in the first
sequence the building number 2 (of height 3 ) is the shortest one, the building
number 1 (of height 6 ) is the second shortest, the building number 5 (of height
7 ) is the third shortest, and so on.

Solution

The problem described in the task statement is a variant of the string
matching problem. We are given two strings: a pattern p[1. .n] and
a text t[1. .m]. The task is to �nd all positions 1 6 j 6 m − n + 1,
such that the pattern matches the text at position j. In our problem,
however, both the pattern and the text are sequences of distinct
integers.

Moreover, the pattern p[1. .n] is not given explicitly. Instead we
are given a sequence (si), that describes p[1. .n]: s1 is the index of the
smallest element in p[1. .n], s2 is the second smallest, and so on. Any
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p[1. .n] which is consistent with the input is equivalent, so from now
on we assume that p[1. .n] consists of distinct integers from the range
[1, n]. This representation can be easily computed from (si) in O(n)
time.

In the most typical pattern matching problem, the pattern matches
the text at position j if p is equal to t[j. .j + n− 1]. This problem gives
a di�erent de�nition of a match, in which the pattern matches the text
if it is isomorphic to t[j. .j + n− 1]. We call two sequences a and b of
length k isomorphic if:

a[i] < a[j]⇔ b[i] < b[j] for all 1 6 i, j 6 k.

To shorten the notation, we write a ≈ b to denote that a is isomorphic
to b. In the following we use two simple, but important observations.
Given three sequences a, b and c of length k:

• If a ≈ b, then all their corresponding subwords are isomorphic,
that is a[x. .y] ≈ b[x. .y] for (1 6 x 6 y 6 k).

• If a ≈ b and b ≈ c, then a ≈ c.

To solve the problem, we adapt the Knuth-Morris-Pratt (KMP) string
matching algorithm to our needs. In the following we assume that the
reader is familiar with it.

The failure function

We de�ne a border of a sequence a[1. .k] as a su�x of a[1. .k] of length
t which is isomorphic to a[1. .t]. As in the KMP algorithm, we begin
by computing a failure function f . For each 1 6 i 6 n, we want to
know what is the longest border of p[1. .i] (excluding the trivial border
of length i):

f [i] = max
06k<i

p[1. .k] ≈ p[i− k + 1. .i].

Additionally, we set f [0] = 0.
We compute the values f [i] one by one, for increasing values of i.

The longest border of p[1. .i] consists of some border of p[1. .i− 1] and
the letter p[i]. Hence, we iterate through all the borders of p[1. .i],
starting from the longest one, and for each border we check if it can be
extended with p[i] to form a border of p[1. .i].
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To iterate through all the borders we use the following lemma; its
proof is given later.

Lemma 1. The lengths of all the borders of p[1. .i] are given by
f [i], f [f [i]], f [f [f [i]]], . . .

Note that since 0 6 f [i] < i, from some point the above sequence
consists of zeroes only.

It remains to show how to check whether some border of p[1. .i− 1]
extended with p[i] forms a border of p[1. .i]. In other words, given two
sequences a[1. .k] and b[1. .k] (the former corresponds to a pre�x of the
pattern, while the latter to its subword), we want to check if they are
isomorphic, knowing that a[1. .k − 1] ≈ b[1. .k − 1]. Observe that it
su�ces to check whether:

a[q] < a[k]⇔ b[q] < b[k] for all 1 6 q < k.

This can be rewritten in the following way (recall that all elements in
each of the sequences a, b are distinct):

Property 1. For some 1 6 r 6 k, a[k] is the r-th biggest number
among a[1. .k] and b[k] is the r-th biggest number among b[1. .k].

We now describe a way of checking if the above holds.
Let a[u] be the greatest integer among a[1. .k − 1] which is smaller

than a[k] and a[w] be the smallest integer among a[1. .k − 1] which is
greater than a[k]. Here we assume that both these elements exist, the
other cases are similar. By de�nition, a[u] < a[k] < a[w]. We claim
that checking if b[u] < b[k] < b[w] is equivalent to property 1. This
follows from the fact that a[1. .k − 1] is isomorphic to b[1. .k − 1] so
the number of elements smaller than a[u] in a[1. .k − 1] is the same as
the number of elements smaller than b[u] in b[1. .k − 1]. Similarly, the
number of elements greater than a[w] in a[1. .k − 1] is the same as the
number of elements greater than b[w] in b[1. .k − 1]. Hence, this check
is indeed equivalent to property 1.

We now show how to compute the indices u and w. For each
1 6 i 6 n, we need to �nd in p[1. .i] the element which is the greatest
among the elements less than p[i], call its index g[i]. We also need to
know the index of the smallest number greater than p[i], call its index
h[i] (this is a symmetric problem).
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Recall than p[1. .n] consists of distinct integers from the range [1, n].
We compute g[i] for decreasing values of i. We maintain a doubly linked
list of all elements of p[1. .i] in an increasing order. Initially this is just
a list of all numbers from 1 to n. In every step one element is deleted.
With each element we associate its position in p[1. .n] and for each
position in p[1. .n] we store a link to its corresponding element in the
list. This list allows us for each i to obtain the two elements which are
closest to p[i] in constant time � they are simply the neighbors of p[i]
in the list after n− i elements of the list are removed.

This gives an algorithm for computing the failure function. After
precomputation of the array g[1. .n] and its symmetric counterpart
h[1. .n], which runs in O(n) time, the algorithm is completely analogous
to the computation of failure function in KMP. It follows that the
overall running time is O(n).

Finding the matches

The main operation performed in the matching phase of KMP is,
roughly speaking, the following:

Given a partial match of the pattern in the text, try to extend it with

one character. If this is not possible, use the failure function to get

a shorter partial match, further to the right in the text.

This is what we also do in our problem. Using the ideas described
above, we can check if a partial match can be extended with one
character in constant time. The proof of correctness is simple, the
general idea is that if we skip some correct match (i.e., we move
the partial match too much to the right with the failure function),
we immediately get a contradiction with the de�nition of the failure
function.

Again, since the matching phase is a slightly modi�ed KMP, it runs
in O(n+m) time. Hence, the whole algorithm requires only linear time.

Proof of lemma 1: We show that if p[1. .i] has a border of length
t, then the longest border which is shorter than t has length f [t]. If
f [t] = 0 then the border of length t is the shortest one. From the
de�nition of a border, we have p[1. .t] ≈ p[i− t + 1. .i].
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We �rst show that p[1. .i] has a border of length f [t]. First, observe
that from the isomorphism p[1. .t] ≈ p[i−t+1. .i] it follows that for any
1 6 s < t, p[1. .t] has a border of length s if and only if p[i − t + 1. .i]
has a border of length s. Moreover, any border of p[1. .t] is isomorphic
to a border of p[i− t + 1. .i]. Hence, the border of p[1. .t] of length f [t]
is isomorphic to a border of p[i− t+1. .i] of length f [t]. This gives that
p[1. .f [t]] ≈ p[i− f [t] + 1. .i].

To complete the proof, we have to show that there is no border
of length strictly between f [t] and t. In order to do that, we show
that any border of such length is also a border of p[1. .t], hence it
would contradict the de�nition of f [t]. Let f [t] < u < t and let
p[1. .u] ≈ p[i− u + 1. .i], that is, there is a border of p[1. .i] of length u.
This means that a pre�x of length u of p[1. .t] is isomorphic to a su�x
of p[i − t + 1. .t] of equal length. We already know that p[1. .t] and
p[i− t + 1. .t] are isomorphic, so the su�x of p[i− t + 1. .t] of length u
is isomorphic to a su�x of p[1. .t] of length u. As a result a su�x of
p[1. .t] of length u is isomorphic to p[1. .u], a contradiction. �
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Treasure Hunt

Ahoy! Have you ever heard about pirates and their treasures? Bytie has found
an old bottle while having a walk along the beach in Gdynia. The letter inside
gives instructions on how to find a hidden treasure, but it is quite difficult to
decipher. One thing Bytie knows for sure is that he needs to find two special
points in the park nearby and the treasure will be in the middle of the path
connecting them.

There are several trails in the park. Apart from that, the forest in the park
is very dense, so only positions on the trails are reachable for human beings.
The structure of the trails has an interesting property: for any two points lying
on the trails there is a unique path connecting them. The path may lead along
multiple trails, but it never visits any point more than once.

Bytie asked his friends for help in exploring the park. They will start the
treasure hunt in some point of the park, located on one of the trails. They will
explore the park in phases. In each phase, one of the friends chooses one point
that was already explored and walks a number of steps from that point along
a trail, visiting only points which were never reached by any of the friends
before.

During the exploration, Bytie will be analysing the structure of the park
carefully. From time to time, Bytie may guess the two special points which
determine the location of the treasure. For each such guess, he wants to know
the point located in the middle of the only path connecting them. Your task is
to help Bytie in determining these middle points.

Communication

You should write a library which interacts with the grading program. The
library should contain the following three functions which will be called by the
grader (and any more functions if you like):

• init — this function will be called exactly once, in the beginning of the
execution. It is for you to initialize your data structures etc.

� C/C++: void init();

� Pascal: procedure init();
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When this function is called, you should assume that there is exactly
one point already explored in the park, marked with the number 1.

• path — stating that one of the friends explored a new path in the park.
This function is for you to build your data structures representing trails.

� C/C++: void path(int a, int s);

� Pascal: procedure path(a, s: longint);

The path starts in the point number a (which was already explored) and
takes s steps along a trail (s > 0 ). After each step, the current point
is assigned a new number: the smallest positive integer not yet used for
this purpose. This function will be called at least once.

• dig — asking where to dig for the treasure.

� C/C++: int dig(int a, int b);

� Pascal: function dig(a, b: longint): longint;

It should return the number assigned to the point located in the middle
of the path connecting the points marked with the numbers a and b.
You can assume that the points a and b have already been explored and
that a 6= b. If the middle of the path is not a point with an assigned
number (because the path has an odd length), the function should return
the number assigned to one of the two middle points of the path — the
one that is closer to a (see also the example on the next page). This
function will be called at least once.

Your library may not read anything, neither from the standard input nor
from any file, and may not write anything, neither to the standard output
nor to any file. Your library may write to the standard error stream/file
(stderr). You should be aware, however, that this consumes time during the
execution of the program.

If you are writing in C/C++, your library may not contain the main
function. If you are using Pascal, you have to provide a unit (see the sample
programs on your disk).

Compilation

Your library — tre.c, tre.cpp, or tre.pas — will be compiled with the
grader using the following commands:
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• C: gcc -O2 -static -lm tre.c tregrader.c -o tre

• C++: g++ -O2 -static -lm tre.cpp tregrader.cpp -o tre

• Pascal:
ppc386 -O2 -XS -Xt tre.pas
ppc386 -O2 -XS -Xt tregrader.pas
mv tregrader tre

Sample execution

The table below shows a sample sequence of calls to the functions and the
correct results of the dig calls. The structure of the trails in the park
corresponding to this example run is shown in the figure.

10 9 1
2

3 11 12 13

4

5

6

7

8

14

Function call Result New points added

init(); 1

path(1, 2); 2, 3

dig(1, 3); 2
path(2, 5); 4, 5, 6, 7, 8

dig(7, 3); 5
dig(3, 7); 4
path(1, 2); 9, 10

path(3, 3); 11, 12, 13

dig(10, 11); 1
path(5, 1); 14

dig(14, 8); 6
dig(2, 4); 2
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Constraints

• There will be at most 400 000 calls to the functions (init, path, and
dig) and at most 1 000 000 000 points explored by Bytie’s friends.

• In test cases worth 50 points in total, there will be no more than 400 000
points explored.

• In test cases worth 20 points in total, there will be no more than 5 000
points explored and at most 5 000 calls to the functions init, path, and
dig.

Experimentation

To let you experiment with your solution, you are given a sample grading
program in the file:

tregrader.c, tregrader.cpp, and tregrader.pas

located in the directory /home/zawodnik/tre/ on your machine. To experi-
ment with the grading program, you should put your solution in the file:

tre.c, tre.cpp, or tre.pas

in the respective directory (c, cpp, or pas). In the beginning of the contest
in each of these files you can find a sample incorrect solution to the problem.
You can compile your solution using the command:

make tre

which works exactly as described in the Compilation section, provided that you
compile your program in the respective directory. The C/C++ compilation
requires the file treinc.h, which is also located in the respective directories.

The resulting binary reads a list of function names and arguments from
the standard input, calls the corresponding functions from your solution and
writes the results of the calls of the dig function to the standard output. The
list of functions in the input should be formatted as follows: the first line
contains the number of instructions, q. Then q lines follow, each containing
a character i, p, or d followed by two non-negative integers. The character
determines which function should be called: i for init, p for path, and d for
dig. The integers denote the arguments of the function: a and s for path, a



Treasure Hunt 23

and b for dig. If the character is i, both integers are equal to 0. Note that
the sample grader does not check if the input is formatted correctly or if it
satisfies the requirements listed in the Communication & Constraints sections.

You are given the file tre0.in which represents the sample execution
described above:

12

i 0 0

p 1 2

d 1 3

p 2 5

d 7 3

d 3 7

p 1 2

p 3 3

d 10 11

p 5 1

d 14 8

d 2 4

To read the data from this file, use the following command:

./tre < tre0.in

The results of the dig calls returned by your solution will be written to the
standard output. The correct result for the aforementioned input, written also
in the file tre0.out, is:

2

5

4

1

6

2

You can verify if the output of your solution to the sample test case is correct
by submitting your solution to the grading system.
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Solution

The structure of the trails in the park can be represented as an
undirected graph. The vertices of the graph represent the points which
were assigned a number by one of Bytie's friends, and the edges show
the subsequent steps made by the friends. Each pair of vertices is
connected by exactly one simple path, so the graph is a tree, that is,
a connected acyclic graph. Let us denote by N the total number of
vertices (nodes) of the tree.

The structure of the tree is unfolded in phases, each of which reveals
a path composed of a number of new nodes (the path operation). We
are to answer multiple queries related to the tree. In each query, our
task is to �nd the middle point of the path connecting a given pair
of nodes a, b of the tree, or one of the middle points, if the path has
an odd length (the dig operation). We denote the resulting node by
dig(a, b). Let n be the total number of calls to the functions.

Simple O(Nn) time solutions

The most straightforward solution can be obtained by using one of
the classical graph searching algorithms � Breadth First Search or
Depth First Search � to �nd the path connecting the nodes a and b.
Afterwards we simply return the middle point of the path. Each call to
the searching algorithm takes O(N) time, so the whole algorithm has
O(Nn) time complexity.

There is also another O(Nn) time solution. Let us root the tree
in the node number 1. Now, for every node v we can de�ne its depth,
equal to the distance between v and the root, and its parent, being
the immediate predecessor of v in the path from v to the root. To
simplify the algorithms, we assume that the root is the parent of itself.
Using these notions, one can �nd the path connecting the nodes a and
b in two steps. In the �rst step we equalize the depths of the nodes,
advancing the lower of the nodes to the depth of the upper one. The
second step consists in traversing the tree upwards, simultaneously for
both nodes, until the two nodes meet. The resulting node is called the
lowest common ancestor of a and b, and is denoted by LCA(a, b). Now
we can combine the two parts of the path, corresponding to the nodes
a and b, and �nd the node dig(a, b) as in the �rst algorithm.
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As an example, consider the rooted tree obtained from the example
in the problem statement (�g. 1) and assume we process the dig query
for the nodes 12 and 8. We have depth[12] = 4 and depth[8] = 6, so
we start by going two levels upwards from 8, arriving at the node 6
of depth 4 (indicated in the �gure by an arrow). Finally, we ascend
level by level from the nodes 12 and 6 simultaneously until we reach
the node 2 of depth 1. Here we have LCA(12, 8) = 2. Note that the
answer to the query is: dig(12, 8) = 4.

1

2

3

11

12

13

4

5

6

7

8

14

9

10

Fig. 1: The rooted tree obtained from the example in the problem
statement. Here LCA(12, 8) = 2 and dig(12, 8) = 4.

This solution could be expected to work faster than the previous
one, since the total number of steps in a single query, equal to
depth[a] + depth[b]− 2 · depth[LCA(a, b)], might be o(N). Nevertheless,
the worst-case time complexity is still O(Nn).

Both O(Nn) time solutions score about 20 points, as the partial
scoring conditions may suggest.

O((N + n) log N) time solution — faster LCA

We obtain a solution with a better time complexity by computing the
lowest common ancestors of pairs of nodes more e�ciently. Knowing
LCA(a, b), one can compute dig(a, b) using a single auxiliary function
go-up(a, h), which advances h levels starting from the node a. More
precisely, comparing the depths of the nodes a, b and LCA(a, b), one
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can easily �nd out if the node dig(a, b) lays within the path from a to
LCA(a, b) or within the path from b to LCA(a, b), and then advance
from the appropriate node by the number of levels equal to the half of
the length of the path connecting a and b. See the following pseudocode
for details.

1: function dig(a, b)
2: begin

3: v := LCA(a, b);
4: len := depth[a] + depth[b]− 2 · depth[v];
5: pos := blen/2c;
6: if pos 6 depth[a]− depth[v] then return go-up(a, pos)
7: else return go-up(b, len − pos);
8: end

Let us �rst �gure out how to implement the function go-up

e�ciently. The main idea is switching the numeration system to
binary � we develop an algorithm similar to computing powers by
repeated squaring. For each node of the tree we will not only store its
parent, but also its ancestors lying 2, 4, 8 . . . levels above it. We use
an array anc[1. . N ][0. .m] (where m = dlog Ne), in which anc[v][i] is
the ancestor of v located 2i levels above v, or anc[v][i] = 1 if no such
ancestor exists. Note that this is consistent with a convention that
parent [1] = 1. The values anc[v][∗] are computed when the node v is
created in the path call; below by curr we denote the number of the
last created node of the tree.

1: function path(a, s)
2: begin

3: prev := a;
4: for j := 0 to s− 1 do begin

5: v := curr + 1;
6: depth[v] := depth[prev ] + 1; parent [v] := prev ;
7: anc[v][0] := parent [v];
8: for i := 1 to m do anc[a][i] := anc[anc[a][i− 1]][i− 1];
9: prev := curr ; curr := v;
10: end

11: end
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Using the array anc, one can easily implement the go-up(a, h)
function. If the i-th bit in the binary representation of h is equal to
1, we advance 2i levels upwards from a. Clearly, the implementation
below works in O(m) = O(log N) time.

1: function go-up(a, h)
2: begin

3: for i := 0 to m do begin

4: if h mod 2 = 1 then

5: a := anc[a][i];
6: h := bh/2c;
7: end

8: end

Alternatively, this could be written as follows (this approach is used
later on, in the following section).

1: function go-up2 (a, h)
2: begin

3: i := 0;
4: while 2i+1 6 h do i := i + 1;
5: while i > 0 do begin

6: if 2i 6 h then begin

7: a := anc[a][i];
8: h := h− 2i;
9: end

10: i := i− 1;
11: end

12: end

Now we can �nally proceed to computing the LCAs of nodes. Note
that the �rst step of �nding LCA(a, b) � equalizing the depths of a
and b � can be implemented by making just a single call to the go-up
function. The second step is also similar. If after the �rst step the
nodes are already equal, we do nothing. Otherwise we start by �nding
the smallest integer value of i such that advancing 2i levels from a and
b we get to the same node. This is an upper bound for the number of
levels we need to ascend to reach LCA(a, b). Now we are going to �nd
the level of the nodes located just one level below LCA(a, b). For this,
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we try to go 2i−1, 2i−2, . . . , 20 levels up from a and b, if only after such
a step we arrive at di�erent nodes. We end up with a pair of nodes,
whose LCA is their parent.

1: function LCA(a, b)
2: begin

3: { First step }
4: if depth[a] < depth[b] then a := go-up(a, depth[a]− depth[b])
5: else b := go-up(b, depth[b]− depth[a]);
6: if a = b then return a;
7: { Second step }
8: i := 0;
9: while anc[a][i] 6= anc[b][i] do i := i + 1;
10: for j := i− 1 downto 0 do

11: if anc[a][j] 6= anc[b][j] then begin

12: a := anc[a][j];
13: b := anc[b][j];
14: end

15: return parent [a];
16: end

Now, let us analyse the complexity of the solution. The anc array
requires O(Nm) = O(N log N) space and all other arrays have their
sizes linear in terms of N . Hence the memory complexity increases
to O(N log N) (compared to the previous approaches). As for the
time complexity, each of the functions go-up, LCA and dig performs
a constant number of binary ascents, each in O(log N) time, and the
path function computes the whole array anc, which requires O(N log N)
time in total. The time complexity of the solution is, therefore,
O((N + n) log N). As one could expect having read the problem
statements, such a solution scores 50 points.

O(n log N log n) time solution — using the com-

pacted tree

It is clear that solutions with time complexity Ω(N) have no chances
for a perfect score. We need to try to solve the problem dealing with
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compacted edges. Now we will show how to adapt the previous solution
to such conditions.

A standard approach to such problems is dividing all the nodes of
the tree into explicit and implicit. The nodes having more than one
child or no children (leaves), together with the root of the tree, belong
to the former class, while all other to the latter one. Indeed, this sounds
like a decent idea: e.g., for any pair of nodes a and b, LCA(a, b) is either
one of the nodes a, b or is an explicit node of the tree. On the other
hand, a problem of detecting which nodes are the explicit ones arises.
If we were given the path and dig operations in an o�ine manner, that
is, if we knew all the operations in advance, we could easily detect the
explicit nodes. This is not the case in this problem, though � there is
no way of predicting which nodes will become explicit.

Instead of trying to foresee the future, we can modify the de�nitions
of explicit and implicit nodes. A natural choice could be to de�ne as
explicit nodes the �rst and the last node created within each path call
(and the node number 1 as well), see �g. 2. Now, for each node we know
whether it is explicit at the very moment it is revealed. Furthermore,
one could see the structure of the connections between the explicit
nodes as a tree: that is, for every explicit node (di�erent from the
root) one can choose its parent as the �rst explicit node located in the
path connecting it with the root. For example, for the tree in �g. 2
we would have parent(14) = parent(8) = 4 and parent(4) = 2. One
can also de�ne the depths of the explicit nodes, in two ways: either as
the real-depths, that is, the depths in the uncompacted tree, or as the
depths in the tree formed only by the explicit nodes. That is, depth(v)
equals the number of explicit nodes in the path from v to the root (not
counting v itself). This immediately lets us compute the anc values for
the explicit nodes; this time anc(v, i) represents both the reference to
the node located 2i explicit levels above v and the di�erence of real-
depths of those two nodes. The only problem is that, compared to
the original de�nition of the explicit nodes, we loose the nice property
of the LCA operation: this time LCA(a, b) can be an implicit node
di�erent from a and b, e.g., LCA(14, 8) = 5 is an implicit node in the
�gure.

In the following solution we cope with this problem by simplifying
the way the LCA values are computed. Note that regardless of the
method used here, we still need to implement the function go-up(a, h),
which advances h levels upwards (with respect to the real-depths) from
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Fig. 2: The tree from �gure 1 with explicit nodes represented as �lled
circles and implicit nodes as empty circles.

an explicit or implicit node a. It appears that using this method a
number of times, one can implement the LCA(a, b) function easier than
previously.

Assume that a is located deeper in the tree than b. We start by
advancing real-depth(a)−real-depth(b) levels from a, which is done using
a single go-up call as previously. We arrive at an (explicit or implicit)
node a′. Assume that a′ 6= b, otherwise we are already done. Now we
can �nd LCA(a′, b) = LCA(a, b) using binary search. Indeed, we know
that LCA(a′, b) is located at least one and at most real-depth(b) nodes
above a′ and b, and that all the ancestors of a′ and b′ of real-depth not
exceeding real-depth(LCA(a′, b)) are same ancestors.

1: function LCA2(a, b)
2: begin

3: { First step }
4: if real-depth(a) < real-depth(b) then swap(a, b);
5: a := go-up(a, real-depth(a)− real-depth(b));
6: if a = b then return a;
7: { Second step }
8: low := 1; high := real-depth(b);
9: while low < high do begin

10: med := b(low + high)/2c;
11: if go-up(a, med) = go-up(b, med) then high := med
12: else low := med + 1;
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13: end

14: return go-up(a, low);
15: end

Now it all reduces to the implementation of the go-up(a, h) function.
It should work as follows:

1. Advance from a to its closest explicit ancestor. Let d be the
distance traversed. If d > h, we have the result. Otherwise, we
need to advance h− d levels from the resulting explicit node a′.

2. Perform a binary ascent from a′, similar to the one in the pseu-
docode of the go-up2 function. More precisely, we �nd the lowest
explicit ancestor of a′ of real-depth at least real-depth(a′)−(h−d).
Instead of comparing 2i or 2i+1 with h as in the original pseu-
docode, we compare with h the di�erences of depths of a′ and
anc(a′, i) (anc(a′, i + 1) respectively).

3. Let a′′ be the resulting explicit node. If real-depth(a′′) is equal
to real-depth(a′) − (h − d) then we are done, we have found the
requested node.

4. Otherwise we need to advance from the node a′′ by exactly
real-depth(a′′)− real-depth(a′)+(h−d) levels to �nd the resulting
implicit node. We have two cases: either a′′ is the lower end of a
compacted edge, and then the implicit node is located within the
same edge, or a′′ is the upper end of a compacted edge. In the
latter case we need to �nd the implicit node it is attached to in
the tree and go up along the edge containing this implicit node.

To be able to implement all the aforementioned steps, we need to
decide on a convenient representation of implicit and explicit nodes of
the tree. The explicit nodes will be assigned numbers as they are added
to the tree, starting from the root with the number 1 (note that we omit
implicit nodes in this numeration). We call these the new numbers, in
contrast with the old numbers assigned as in the problem statement.
This enables storing the values parent , depth, real-depth and anc for
the explicit nodes in arrays indexed by their new numbers. Now an
implicit node can be uniquely represented as a pair: (the new number
of its closest explicit ancestor, the distance from the ancestor), note that
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the closest explicit ancestor is always located in the same compacted
edge. To be able to map the old numbers into the new numbers, we
keep an array expl [1. . 2n] containing the old numbers of all explicit
nodes. This array is also indexed by the new numbers of the explicit
nodes in a natural way. To obtain the representation of an implicit node
v, it su�ces to �nd the largest element in the array expl which does
not exceed the old number of v; this element corresponds to the lowest
explicit ancestor of v. We can perform this operation in O(log n) time
using binary search (in C++ one can also use the lower_bound routine
from the STL). Finally, we need an additional array attached [1. . 2n] to
store the representations of (implicit of explicit) nodes to which each
new explicit node is attached (this could be required in the fourth step
of the above algorithm).

This way we have concluded all the technical considerations. The
reader is encouraged to check that now the go-up function can be
implemented in O(log n) time.

We are ready to summarize the solution and �nd its complexity.
We use several arrays of size at most 2n: parent , depth, real-depth,
expl and attached , and the array anc of size O(n log n). All those
arrays are computed during the path calls. Each dig call is performed
as in the pseudocode in the previous solution, just with real-depths

instead of depths. It performs one go-up call and one LCA call, it
also requires �nding representations (the new numbers) of the nodes
being its arguments, which is done in O(log n) time. Each LCA call
performs O(log N) calls to the go-up function, and the latter function
works in O(log n) time. In conclusion, both the LCA function and
the dig function work in O(log N log n) time. The whole solution
works in O(n log N log n) time and O(n log n) space. Depending on
the implementation, it scores between 80 and 100 points.

One way of improving this solution by a constant factor is to make
the lowest nodes created by each path call implicit. Indeed, it is easy
to see that is was not necessary for them to be explicit in the above
solution and we made them so only by an analogy with the classical
notion of explicit nodes.

O(n log n) time solution — the model solution

The model solution for this task has both time and memory complexity
O(n log n). This slight improvement over the previous solution is
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obtained by coming back to the original idea of implementing LCA.
Let us recall the �rst implementation of the LCA(a, b) function, in

which we �rst equalize the depths of the nodes a and b, and then climb
up the tree using the array anc. We can apply the same procedure in
the case of a compacted tree, if only we modify it really carefully. In the
�rst step we start by moving from a and b to their explicit ancestors.
If those are equal, then one of the nodes a, b is the LCA and we can
easily deal with this case. Otherwise, we can equalize the depths of
the explicit nodes. Note that we do mean the depths of the nodes, not
the real-depths, so a di�erent go-up procedure is required than in the
previous section. As the depths of the nodes are equal (note that the
real-depths might be di�erent here!), we perform a binary climb using
the anc array, �nishing in a pair of explicit nodes lying just below their
LCA. Unfortunately, the LCA of the two explicit nodes may be explicit
or implicit, and this gives us several cases we need to consider to return
the result � to see the potential di�culties here, recall �gure 2, and
imagine this �gure with an additional path of length 1 attached to the
node 6 and a query LCA(14, 15), and then another path of length 1
attached at the node 5 and a query LCA(14, 16). Note that similar
special cases arise in what was previously written in line 6 of the LCA
algorithm as a simple equality check. Also the very �rst step of moving
from a and b to their explicit ancestors requires some attention, since
the topmost of the nodes a, b could be their LCA even though their
explicit ancestors could be di�erent.

After getting through all the technicalities from the previous section,
the reader should be able to �ll in this description with all the missing
details. However, it is easy to see that this solution is much less
pleasant to implement than the previous one, and it is faster only by a
logarithmic factor. Having implemented an algorithm of that kind, to
be more certain of the correctness of the program, it is highly advisable
to test it against a brute-force algorithm on a large number of random
test cases.
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Hotel

Your friend owns a hotel at the seaside in Gdynia. The summer season is
just starting and he is overwhelmed by the number of offers from potential
customers. He asked you for help in preparing a reservation system for the
hotel.

There are n rooms for rent in the hotel, the i-th room costs your friend
ci zlotys of upkeep (only if it is rented) and has a capacity of pi people. You
may assume that the upkeep of a room is never cheaper than the upkeep of any
smaller room, that is, of any room which can hold a smaller number of people.

The reservation system will be receiving multiple offers, each of them
specifying the amount of zlotys for rental of any room (vj) for one particular
day and the minimal capacity of the requested room (dj). For each offer, only
a single room can be rented. And conversely: each room can accommodate
only a single offer. Your friend has decided not to accept more than o offers.

Knowing you are a skilled programmer, your friend asked you to implement
the part of the system which finds the maximum profit (total income from
renting out rooms minus their upkeep) he can make by accepting some of the
offers.

Input

The first line of the standard input contains three integers n, m, and o
(1 6 n,m 6 500 000 , 1 6 o 6 min(m,n)), denoting the number of rooms
in the hotel, the number of offers received and the maximum number of offers
your friend is willing to accept. The next n lines describe the rooms, with the
i-th of these lines containing two integers ci, pi representing the upkeep of the
room in zlotys and the capacity of the room (1 6 ci, pi 6 10 9). The next m
lines describe the offers, with the j-th of these lines containing two integers
vj , dj representing the offered rental price in zlotys and the minimal capacity
of the requested room (1 6 vj , dj 6 10 9).

You may assume that in test cases worth 40 points in total an additional
inequality n,m 6 100 holds.
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Output

The first and only line of the standard output should contain one integer equal
to the maximum profit your friend can achieve accepting at most o of the
offers. Note that the profit might get big.

Example

For the input data:
3 2 2
150 2
400 3
100 2
200 1
700 3

the correct result is:
400

Explanation of the example: Your friend can accept both offers,
renting out rooms number 2 and 3.

Solution

In this task we are asked to select at most o o�ers from the given set
and pair them up with the rooms. We cannot pair o�ers with rooms
smaller than requested. Under these constraints, we want to earn as
much as we can.

Basic idea

Our solution is based on a greedy approach. We start o� by sorting the
o�ers by their o�ered price values (vj) in a non-increasing order. Then
for each o�er we �nd the smallest room which is not yet paired with
any other o�er and is large enough to su�ce the currently considered
o�er (i.e., pi > dj). If there is no such room, we discard the o�er. Note
that, by a corresponding condition from the problem statement, the
selected room has the smallest upkeep among all rooms satisfying the
requirements of the o�er. We mark this o�er and this room as paired.

After we �nish pairing, we basically choose o best pairs as the result.
More precisely, we order the pairs with respect to their pro�t, i.e., the
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price o�ered decreased by the upkeep of the room. If the pro�t is
negative (it is actually a loss), we discard the corresponding pair. As
the result we take the top o pairs in the order of pro�t, or we take a
smaller number of pairs if there are less than o pairs available.

Why does it work?

The above solution works in two phases: pairing the o�ers with the
rooms and choosing the best pairs. Note that if the pairs created are
�xed, then the second phase clearly gives the optimal result. So we
only need to prove that we create the best pairing possible.

Let PALG be the set of pairs (o�er, room) created by our algorithm
and let POPT be the set of pairs created by a hypothetical optimal
algorithm, that is, such a set of pairs for which the total pro�t generated
is maximized. For a pairing P , we denote by W (P ) the pro�t this
pairing generates, that is, the sum of pro�ts of at most o most pro�table
pairs in P . If PALG = POPT then our algorithm is certainly optimal.
Otherwise, we will prove that POPT can be transformed into PALG

without decreasing W (POPT ).
Note that some o�ers and some rooms may not be included in each

of the pairings. To simplify the analysis, we assume that there is a
su�cient number of rooms with an extremely large capacity and also
an extremely large upkeep, which can be paired with any of the o�ers.
Similarly, we can add arti�cial o�ers with both the o�ered price and
requested capacity equal to 0. From now on we can assume that each
o�er and each room is paired, possibly with an arti�cial room or o�er.

Let j1 be the �rst o�er (in the order of the o�ered price, as in the
solution description) which is paired with a di�erent room by ALG and
OPT . Assume that it is paired with the room i1 by ALG and with
the room i2 by OPT . Due to the greedy manner in which the o�ers
are paired with the rooms in our solution, we have ci2 > ci1 and also
pi2 > pi1 . Let j2 be the o�er which is paired with the room i1 in OPT .
We have:

(j1, i1) ∈ PALG , (j1, i2), (j2, i1) ∈ POPT .

We will prove that by changing the pairs (j1, i2), (j2, i1) (the old pairs)
into (j1, i1), (j2, i2) (the new pairs) we obtain a solution P ′OPT for
which W (P ′OPT ) >W (POPT ). This will conclude the whole proof.
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First of all, we need to prove that the o�er j2 can possibly be paired
with the room i2, i.e., that pi2 > dj2 . As we have already noticed,
pi2 > pi1 , and since (j2, i1) ∈ POPT , we have pi1 > dj2 . Combining
these two inequalities, we obtain that pi2 > dj2 , as requested.

Clearly, the sum of pro�ts in the two old pairs and the two new
pairs is exactly the same. However, the pro�ts of the new pairs are
more polarized:

vj1 − ci1 > vj2 − ci1 , vj1 − ci2 > vj2 − ci2 .

From this we can conclude that the swap of the rooms does not decrease
W (POPT ). Indeed, if any of the old pairs was present among the �nal
o pairs (that is, included in W (POPT )), then the pair (j1, i1) (or a
pair with equal pro�t generated) will also be. If both old pairs were
included, then either both new pairs will be included or (j1, i1) (or
other pro�t-equivalent pair) and another pair not worse than (j2, i2)
will be. Finally, if none of the old pairs was included in W (POPT ),
then the pair (j1, i1), with non-smaller pro�t, could only increase the
total pro�t if it gets selected to W (POPT ). In all the cases the pro�t
stays the same or increases, which concludes the proof.

Implementation details

The second part of our solution (�nding the o best pairs) can be
implemented using any e�cient sorting algorithm in time complexity
O((n + m) · log (n + m)). In the �rst part of the solution we need
a data structure which allows us to perform operations lower_bound

(�nding the smallest element in the structure above a given threshold)
and remove (removing a given element) e�ciently. We can choose
one of the well-known dictionary data structures: AVL tree, Splay,
or Red-Black tree (which is implemented as set or map container in
the STL in C++). Then each of the requested operations is performed
in logarithmic time and the structure can initially be constructed in
linear-logarithmic time. The total running time of the algorithm is
O((n + m) · log (n + m)).
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What if you do not like STL?

Well. . . if you fancy Pascal and do not feel like implementing AVL/Red-
Black trees by your own, you could either try to use a static data
structure (like a segment tree) instead, or take a slightly more Pascal-
friendly approach proposed in this section. The rough idea is to �nd
a di�erent data structure which can perform the operations remove,
lower_bound in a decent amortized time.

Let us consider the following solution, which uses the Find-Union

data structure. We �rst sort all the o�ers by their price values in a non-
increasing order and the rooms by their sizes (equivalently, upkeep) in
a non-decreasing order. Then for each o�er we use binary search to
�nd the �rst room satisfying the o�er. If we decide to create a pair
consisting of the o�er and the room, we mark the room as paired and
union it with the set containing the next room on the list. After the
binary search, if we hit a room which is marked as paired, we consider
the furthest room it is in the same set with instead. This way we will
ignore all already used rooms. In total we perform O(n + m) Find-
Union operations in addition to O(n + m) binary searches, thus the
time complexity of this solution is also O((n + m) · log (n + m)).

Other approaches

One could try to visualize this task as a minimum cost maximum
�ow problem in a bipartite graph. Using any of the classical e�cient
algorithms for this problem, one would get 40 points for this task.

If a linear time implementation of the remove and lower_bound

operations is used instead of the e�cient algorithms described above,
an O(nm) time algorithm can be obtained. Such a solution would
receive about 50 points.
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Teams
A Sports Day is being held in a primary school in Gdynia. The most important
part of the event is the Annual Football Cup.

Several children gathered at the football pitch, where teams were to be
formed. As everyone wanted to belong to the best team, the players could
not reach an agreement. Some of them threatened not to play, others started
to cry and now nobody is sure if the tournament will take place at all.

Byteman, a sports teacher, is in charge of organizing the tournament. He
decided to split the children into teams himself, so that no player would be
unhappy with her team. The i-th of the n children on the pitch (numbered 1
through n) said that she will be unhappy with her team if the team consists of
less than ai players.

Apart from satisfying the children’s requirements, Byteman would like to
maximize the total number of teams. If there are still many possibilities, he
requests the size of the largest team to be as small as possible. As it turned
out to be quite a difficult task, Byteman asked you for help.

Input

In the first line of the standard input there is one integer n (1 6 n 6 10 6).
Then, n lines follow. The i-th of these lines contains a single integer ai
(1 6 ai 6 n), that denotes the minimum team size that satisfies the child
number i.

Additionally, in test cases worth at least 50 points, n will not exceed 5 000 .

Output

In the first line of the standard output your program should write a single
integer t equal to the maximum possible number of teams. Then, t lines
containing a description of the teams should follow. The i-th of these lines
should contain an integer si (1 6 si 6 n) denoting the size of the i-th team,
and then si integers k1, k2, . . . , ksi (1 6 kj 6 n for j = 1 , 2 , . . . , si), denoting
the numbers of children belonging to the team i. If there are many possible
answers, you can output any of the solutions which minimize the size of the
largest team (among all the solutions consisting of exactly t teams).
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Example

For the input data:
5
2
1
2
2
3

the correct result is:
2
2 4 2
3 5 1 3

Solution

In this task we are to divide children into teams. Let us say that
a division is valid whenever all children's demands are ful�lled. We
call every valid division a solution. A solution is optimal if and only
if it consists of the smallest possible number of teams and, among all
such solutions, the size of the largest team is minimized.

First, let us investigate when a group of children may form a team.
Observe that a team may consist of children numbered i1, i2, . . . , ik
if and only if max(ai1 , ai2 , . . . , aik

) 6 k, that is, the size of the team
is at least as big as the largest among the requirements. Clearly, if
this condition holds, then all the demands are satis�ed. Otherwise an
inequality ail

> k must hold for some l, which means a demand is not
satis�ed.

Before we proceed with further observations, let us assume that the
children are ordered in such a way, that their requirements form a non-
decreasing sequence, i.e., a1 6 a2 6 . . . 6 an. This can be achieved in
linear time by counting sort, as the numbers are not greater than n.

Now, we can only consider solutions in which all teams consist of
consecutive children, as there exists at least one optimal solution of this
form. The proof of this statement is simple. Let us �x two teams of sizes
t1 6 t2, such that at least one of them does not consist of consecutive
children. We can take all children from both teams and split them in
a pair of new teams, still of sizes t1 and t2. Namely, t1 children with
smallest requirements will form the �rst team, and the remaining t2
children � the second team. It is easy to observe that in both teams
all the demands are met, since their sizes remained unchanged and the
biggest requirement in any team could only decrease. In addition to
that, the greatest index of a child in both teams does not increase and
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in at least one of the teams it decreases. This means that we can repeat
this process until all teams consist of consecutive children. From now
on (until the �nal part of the last section of the task analysis) we only
consider solutions in which all teams consist of consecutive children.

An O
(
n2
)

time solution

The observations made so far lead to a simple quadratic time solution
based on dynamic programming. For each i from 1 to n we calculate
two values: Teams[i] � the greatest number of teams in the optimal
solution for the children 1, 2, . . . , i, and MaxTeam[i] � the size of
the largest team in that solution. If for some i the children cannot be
partitioned in a valid way, we set Teams[i] = −∞. This happens, for
example, when ai > i. For simplicity we assume that Teams[0] = 0
and MaxTeam[0] = −∞.

Suppose we have already computed Teams and MaxTeam for
1, 2, . . . , i − 1 and we want to know Teams[i] and MaxTeam[i].
According to the observations, we assume that the i-th child be-
longs to the team consisting of children j, j + 1, . . . , i for some
1 6 j 6 i. Hence, Teams[i] = Teams[j − 1] + 1 and
MaxTeam[i] = max {i− j + 1, MaxTeam[j − 1]}.

We can search for j which maximizes Teams[i] and among all such
j's pick the one which minimizes MaxTeam[i]. Clearly, the resulting
solution works in O(n2) time. It should score 50 points.

More efficient solutions

We implement an auxiliary function MaxTeams(limit), which com-
putes the division of children into a maximal number of teams of size
at most limit . We �rst call MaxTeams(n) to �nd the maximal possi-
ble number of teams T and then do a binary search to �nd the lowest
M , for which MaxTeams(M) computes the division into T teams.

We now describe how to implement MaxTeams(limit), so that it
runs in O(n log n) or O(n) time. We compute an array TeamsL such
that TeamsL[i] is equal to the greatest number of teams of size at
most limit that can be formed from children 1, 2, . . . , i. Again, we only
consider teams consisting of consecutive children.
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The basic observation is that the team containing child i has
size x, which satis�es ai 6 x 6 limit . Hence, we can �nd such s
(ai 6 s 6 limit) that TeamsL[i− s] is maximal and form a new team
from children i− s + 1, i− s + 2, . . . , i, thus creating TeamsL[i− s] + 1
teams in total. Finding the right value for s can be achieved in O(log n)
time, using an e�cient data structure for range minimum queries in
the TeamsL array, for example, a segment tree. In total, we call
MaxTeams O(log n) times, because of binary search, and since each
call takes O(n log n) time, we obtain an O(n log2 n) time solution. Such
a solution scores about 70 points.

This can also be done more e�ciently. If for some i < n there
exists j < i such that the maximal possible number of teams that
can be formed from children 1, 2, . . . , i is smaller than TeamsL[j], we
set TeamsL[i] = −∞. This is because in any optimal solution (with
each team consisting of consecutive children) there cannot be a team
in which the child with the biggest requirement is i.

To prove it, assume that there is an optimal solution which contains
a team j + 1, j + 2, . . . , i. Then, we can alter the solution by
building TeamsL[j] teams from children 1, 2, . . . , j and adding children
j + 1, j + 2, . . . , i to the group containing the n-th child. As a result,
we increase the number of groups, a contradiction.

From the observation, it follows that the sequence of all TeamsL[i]
which are not equal to −∞ is non-decreasing. Hence, to �nd the
greatest value of TeamsL[i] in a given interval, it su�ces to �nd the
last non-negative value. This can be done in constant time if in the
dynamic programming for every i we also compute the biggest i′ 6 i
such that TeamsL[i′] is non-negative.

This algorithm, running in O(n log n) time, scores 100 points.

Model O(n) time solution

The model solution is quite tricky. We reverse the order of the
children and assume that they are sorted in non-ascending order, i.e.,
a1 > a2 > . . . > an. Let TeamsR[i] and MaxTeamR[i] denote the
maximum number of teams that can be formed from children 1, 2, . . . , i
and the minimum possible size of the biggest team, respectively. We
append the letter R to the names of the arrays, as the children are now
sorted in reverse order. The group containing child number 1 has to
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contain at least a1 children. Hence, for i < a1, TeamsR[i] = −∞. For
i = a1 we have TeamsR[i] = 1 and MaxTeamR[i] = i.

We compute both TeamsR and MaxTeamR again using dynamic
programming. Assume that we want to compute TeamsR[i] and
MaxTeamR[i], where i > a1.

Let us take a look at the solution for i − 1. We can add the i-
th child to the team which contains the child i − 1. This obviously
does not increase the total number of teams. On the other hand,
it is easy to see that from the children 1, 2, . . . , i we can form at
most one more team than from children 1, 2, . . . , i − 1. Hence, either
TeamsR[i] = TeamsR[i− 1] or TeamsR[i] = TeamsR[i− 1] + 1.

How do we check whether TeamsR[i] = TeamsR[i − 1] + 1?
This is the case when for some 1 6 j 6 i we have
TeamsR[j − 1] = TeamsR[i − 1] and we can form a valid team from
the children numbered j, j+1, . . . , i. The second condition is equivalent
to checking if aj 6 i− j + 1. If we search for such j iterating through
all possibilities, we will end up with another O(n2) solution. In fact it
is very similar to the one explained above.

To accelerate it, we observe that once we �nd 1 6 j 6 i, such
that TeamsR[j − 1] = TeamsR[i − 1] and aj 6 i − j + 1, then in
fact aj = i − j + 1. Otherwise, we would have aj < i − j + 1 so we
could create TeamsR[j − 1] teams from children 1, 2, . . . , j − 1 and
another team from those numbered j, j + 1, . . . , i − 1. As a result, we
would get TeamsR[j−1]+1 = TeamsR[i−1]+1 teams from children
1, 2, . . . , i− 1, which contradicts the de�nition of TeamsR[i− 1].

Hence, we can search only for j's satisfying aj = i − j + 1, which
can be rewritten as aj + j = i + 1. This means that for every j there
is at most one i, such that aj + j = i + 1. Thus, for each i one can list
all possible values of j and then, while computing TeamsR[i], iterate
through those j's.

It remains to �nd MaxTeamR[i], that is, the size of the
largest team in the optimal solution for children 1, 2, . . . , i. If
TeamsR[i] = TeamsR[i−1]+1, it can be computed along with search-
ing for the size of the team containing the i-th child. The case when
TeamsR[i] = TeamsR[i − 1] is more complex. Let us consider how
an optimal solution for children 1, 2, . . . , i can be formed in this case.
There are two possible ways of forming the teams.

1. If removing the i-th child does not violate the requirement
of any of her teammates, we can take an optimal division of
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children 1, 2, . . . , i − 1 into TeamsR[i − 1] teams and add the
child i to one of those teams. The optimal way is to add
her to the smallest among those teams1. Observe that the
requirement of the child i is satis�ed, as she joins a team,
in which requirements are greater than or equal to ai. If
i − 1 = TeamsR[i − 1] ·MaxTeamR[i − 1] then all teams are
of equal size, so after adding the child i, one team consists of
MaxTeamR[i−1]+1 children. Otherwise, we keep the maximum
team size intact and set MaxTeamR[i− 1] = MaxTeamR[i].

2. We can also form a team from children numbered j, j + 1, . . . , i
for some j, such that TeamsR[j − 1] = TeamsR[i] − 1. This
means that aj + j = i + 1. As before, we can iterate over all
j's satisfying the equation and �nd the one that minimizes the
largest team size.

The above ideas allow us to compute both arrays in O(n) total time.

1Note that this may result in creating teams that do not consist of consecutive
children, but, as we argued before, any solution can be transformed to such a form.
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Traffic

The center of Gdynia is located on an island in the middle of the Kacza river.
Every morning thousands of cars drive through this island from the residential
districts on the western bank of the river (using bridge connections to junctions
on the western side of the island) to the industrial areas on the eastern bank
(using bridge connections from junctions on the eastern side of the island).

The island resembles a rectangle, whose sides are parallel to the cardinal
directions. Hence, we view it as an A×B rectangle in a Cartesian coordinate
system, whose opposite corners are in points ( 0 , 0) and (A,B).

On the island, there are n junctions numbered from 1 to n. The junction
number i has coordinates (xi, yi). If a junction has coordinates of the form
( 0 , y), it lies on the western side of the island. Similarly, junctions with
the coordinates (A, y) lie on the eastern side. Junctions are connected by
streets. Each street is a line segment connecting two junctions. Streets can
be either unidirectional or bidirectional. No two streets may have a common
point (except for, possibly, a common end in a junction). There are are no
bridges or tunnels. You should not assume anything else about the shape of
the road network. In particular, there can be streets going along the river bank
or junctions with no incoming or outgoing streets.

Because of the growing traffic density, the city mayor has hired you to
check whether the current road network on the island is sufficient. He asked
you to write a program which determines how many junctions on the eastern
side of the island are reachable from each junction on the western side.

Input

The first line of the standard input contains four integers n, m, A and B
(1 6 n 6 300 000 , 0 6 m 6 900 000 , 1 6 A,B 6 10 9). They denote
the number of junctions in the center of Gdynia, the number of streets and
dimensions of the island, respectively.

In each of the following n lines there are two integers xi, yi (0 6 xi 6 A,
0 6 yi 6 B) describing the coordinates of the junction number i. No two
junctions can have the same coordinates.

The next m lines describe the streets. Each street is represented in a single
line by three integers ci, di, ki (1 6 ci, di 6 n, ci 6= di, ki ∈ {1 , 2}). Their
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meaning is that junctions ci and di are connected with a street. If ki = 1 ,
then this is a unidirectional street from ci to di. Otherwise, the street can be
driven in both directions. Each unordered pair {ci, di} can appear in the input
at most once.

You can assume that there is at least one junction on the western side of
the island from which it is possible to reach some junction on the eastern side
of the island.

Additionally, in test cases worth at least 30 points, n,m 6 6 000 .

Output

Your program should write to the standard output one line for each junction on
the western side of the island. This line should contain the number of junctions
on the eastern side that are reachable from that junction. The output should
be ordered according to decreasing y-coordinates of the junctions.

Example

For the input data:
5 3 1 3
0 0
0 1
0 2
1 0
1 1
1 4 1
1 5 2
3 5 2

the correct result is:
2
0
2
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Whereas for the input data:
12 13 7 9
0 1
0 3
2 2
5 2
7 1
7 4
7 6
7 7
3 5
0 5
0 9
3 9
1 3 2
3 2 1
3 4 1
4 5 1
5 6 1
9 3 1
9 4 1
9 7 1
9 12 2
10 9 1
11 12 1
12 8 1
12 10 1
the correct result is:
4
4
0
2
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Solution

The road network in the center of Gdynia is described with a directed
graph. The graph is drawn in a rectangle, in such a way that no two
edges intersect. In particular, the graph is planar.

The goal is to determine the number of vertices drawn on the right
side of the rectangle reachable from each vertex on the left side.

A simple solution

The problem can easily be solved with a graph searching algorithm.
For every junction on the western side, we can compute all reachable
junctions on the eastern side in linear time, using, for example, the BFS
algorithm. It is a well-known fact that planar graphs with n vertices
have O(n) edges, so such algorithm runs in O(n2) total time, and scores
about 30 points.

A few observations

The following solutions, unlike the previous one, take advantage of
planarity of the graph. In the description, we write u  v to denote
that there exists a directed path from a vertex u to v.

The model solution starts by eliminating unnecessary vertices from
the graph. We remove all junctions which cannot be reached from
any western junction and all western junctions, from which it is not
possible to reach any eastern junction. This can be achieved in linear
time using BFS: �rst we run the graph search algorithm starting in all
the western junctions and discard all eastern junctions which are not
visited; then we apply the same procedure for all the eastern junctions
in the graph with all edges reversed. We need to consider these removed
vertices while printing the output, but, for the sake of simplicity, in the
following we assume that in the input such junctions have already been
removed.

Let w1, w2, . . . , wc be the junctions on the western side and let
e1, e2, . . . , ed denote the junctions on the eastern side of the island.
In both lists, the junctions are sorted in ascending order of second
coordinates.
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The removal of some junctions allows us to formulate the key
observation.

Observation 1. Let 1 6 x < y 6 d and let v be an arbitrary vertex.
If v  ex and v  ey, then for all z, such that x < z < y, v  ez.

Proof: This property follows directly from the structure of the net-
work. Fix some x < z < y. There exists some western junction wq,
such that wq  ez. Because the graph is planar, the path from wq to
ez has to intersect one of the paths v  ex, v  ey in some junction
u. Hence, there exists a path v  u ez. �

The observation implies that the set of junctions reachable from
any western junction is a sequence of consecutive junctions on the
eastern side. We de�ne north(wi) to be the index of northernmost
eastern junction reachable from wi and south(wi) to be the index of
southernmost eastern junction reachable from wi. Thus, the number
of eastern junctions reachable from wi is north(wi)− south(wi) + 1.

Model solution

How can we compute the functions north and south? We concentrate
on the former one, since the latter can be computed in a similar manner.

Observe that the north function is non-decreasing, that is, for i < j,
north(wi) 6 north(wj). To prove it, let us assume the opposite,
that is, north(wj) = z < north(wi). We exploit the planarity of
the graph and the facts that i < j and z < north(wi). The path
wj  ez has to intersect the path wi  enorth(wi). Hence, there
exists a path wj  enorth(wi). This contradicts the assumption that
north(wj) < north(wi).

We can now give a simple algorithm. For consecutive values of i,
starting from 1, we compute north(wi) using DFS or BFS. Due to
monotonicity, we do not need to visit nodes which were already visited
in one of the previous searches. If during the search originating in
wi we visit some eastern junctions, then we know that north(wi) is
the greatest among all indices of visited eastern junction. Otherwise,
north(wi) = north(wi−1).

Since we visit every junction exactly once, the time and space
complexity is linear. The south function is computed similarly.
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Because we initially sort all eastern and western junctions, the overall
time complexity is O(n log n).

Alternative solution

One can also take a very di�erent approach to computing north
and south functions. It uses the concept of strongly connected
components.

Let us naturally extend the north and south functions to all
junctions. Let N (v) be the set of vertices directly reachable from v.
It is clear that for any junction v which is not on the eastern side
north(v) = maxw∈N (v) north(w), whereas for any 1 6 i 6 d, north(ei)
is the maximum of maxw∈N (ei) north(w) and i.

A similar formula holds for the south function. Unfortunately,
our graph can contain cycles, so the formulas might lead to recursive
dependencies.

To deal with that, we �nd strongly connected components in the
input graph. This can be done in linear time using Tarjan's algorithm
or Kosaraju's algorithm. After that, we construct a directed acyclic
graph G by contracting all edges within each strongly connected
component. For any two vertices u and v belonging to the same strongly
connected component, north(u) = north(v) and south(u) = south(v).
Therefore it su�ces to compute the values of both functions in the
graph G. We �rst compute them for vertices v such that N (v) is empty
and then go through all the remaining vertices in reverse topological
order and use the aforementioned formulas. As a result, we obtain
another solution working in O(n log n) time.
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