Central European Olympiad in Informatics
Tîrgu Mureş, România
July 8 - 14, 2009
Contest Day 2

Source code: tri.c, tri.cpp, tri.pas
Input files: tri.in
Output files: tri.out
Time limit: $2 \mathbf{s}$
Memory limit: $\quad 64 \mathbf{M B}$

Task

You are given \mathbf{K} points with positive integer coordinates. You are also given \mathbf{M} triangles, each of them having one vertex in the origin and the other 2 vertices with non-negative integer coordinates.
You are asked to determine for each triangle whether it has at least one of the \mathbf{K} given points inside. (None of the \mathbf{K} points are on any edge of any triangle.)

Input

The first line of the input file tri.in will contain \mathbf{K} and \mathbf{M}. The following \mathbf{K} lines will contain 2 positive integers $\mathbf{x} \mathbf{y}$ separated by one space that represent the coordinates of each point. The next \mathbf{M} lines have $\mathbf{4}$ non-negative integers separated by one space, ($\mathbf{x} \mathbf{1}, \mathbf{y} \mathbf{1}$) and ($\mathbf{x} \mathbf{2}, \mathbf{y}^{2}$), that represent the other $\mathbf{2}$ vertices of each triangle, except the origin.

Output

The output file tri. out should contain exactly \mathbf{M} lines. The k-th line should contain the character \mathbf{Y} if the k-th triangle (in the order of the input file) contains at least one point inside it, or \mathbf{N} otherwise.

Constraints

- $1 \leq K, M \leq 100000$
- $1 \leq$ each coordinate of the K points $\leq 10^{9}$
- $0 \leq$ each coordinate of the triangle vertices $\leq 10^{9}$
- Triangles are not degenerate (they all have nonzero area).
- In $\mathbf{5 0 \%}$ of the test cases, all triangles have vertices with coordinates $\mathbf{x 1}=\mathbf{0}$ and $y^{2}=0$. That is, one edge of the triangle is on the x-axis, and another is on the y-axis.

Central European Olympiad in Informatics
Tîrgu Mureş, România
July 8 - 14, 2009
Contest Day 2

Example

tri.in	tri.out	Explanation	
4	3		
1	2	Y	
1	3		
5	1		
5	3		
1	4	3	3
2	2	4	1
4	4	6	3

tri.in	tri.out	Explanation
$\begin{array}{lll} \hline 4 & 2 & \\ 1 & 2 & \\ 1 & 3 & \\ 5 & 1 & \\ 4 & 3 & \\ 0 & 2 & 1 \end{array} 0$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{Y} \end{aligned}$	

