
2003
CEOI
1010

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany
June 5 – 12, 2003

Page 1 of 3 Day 1: trip

Input File: - 100 Points
Output File: - Time limit: 1 s
Source File: trip.pas/.c/.cpp Memory limit: 16 MB

Solution

The problem asks for printing all different longest common subsequences of two given strings. The
first idea might be to use the standard dynamic programming algorithm for determining the length
of the longest common subsequences and then construct each longest common subsequence one by
one. Let us define A = (a[1], a[2], . . . , a[n]) to be the first string, B = (b[1], b[2], . . . , b[m]) to be
the second string, and c[i, j] be the length of the longest common subsequence of (a[1], . . . , a[i]) and
(b[1], . . . , b[j]).

Then

c[i, j] =











0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i, j > 0 and a[i] = b[j]

max(c[i − 1, j], c[i, j − 1]) if i, j > 0 and a[i] 6= b[j]

The length of a longest common subsequence of A and B is then c[n,m].

With this recurrence equation of c[i, j] it is easy to come up with the following dynamic program-
ming algorithm:

for i:=1 to n do
c[i,0] := 0

for j:=0 to m do
c[0,j] := 0

for i:=1 to n do
for j:=1 to m do

if a[i] = b[j] then
c[i,j] := c[i-1,j-1]+1

else
c[i,j] := max(c[i-1,j],c[i,j-1])

To construct a longest common subsequence, we have to trace back in the table c where the maxi-
mum value has come from. This can be done recursively like this:

traceback(i,j,sequence)
if i = 0 or j = 0

add sequence to the set of longest common subsequences
return

if a[i] = b[j] then
prepend a[i] to sequence
traceback(i-1,j-1,sequence)
return

if c[i-1,j] = c[i,j] then
traceback(i-1,j,sequence)

if c[i,j-1] = c[i,j] then



2003
CEOI
1010

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany
June 5 – 12, 2003

Page 2 of 3 Day 1: trip

traceback(i,j-1,sequence)

If we look closer to this code, we will notice that in the case that c[i − 1, j] = c[i, j − 1] there
are two calls to traceback. Even if it is said there are at most 1000 longest common subsequences,
this doesn’t tell about the number of possibilities to construct them. This function will try all ways
to construct all possible longest common subsequences. For the two strings ”aaaaaaabcccccccd” and
”abbbbbbbcddddddd” there are already 1778966 possibilities to construct the only longest common
subsequence of these strings, ”abcd”.

Who can one avoid to construct the same sequence several time? It can avoid this by constructing
the sequences simultaneously with the length. We need a table of sets that contain all longest common
subsequences of (a[1], . . . , a[i]) and ([b1], . . . , [bj]).

The new dynamic programming algorithm now looks like this:

for i:=1 to n do
c[i,0] := 0
set[i,0] := empty

for j:=0 to m do
c[0,j] := 0
set[0,j] := empty

for i:=1 to n do
for j:=1 to m do

if a[i] = b[j] then
c[i,j] := c[i-1,j-1]+1
set[i,j] := set[i-1,j-1]
append a[i] to the end of all sequences in set[i,j]

else
c[i,j] := max(c[i-1,j],c[i,j-1])
if c[i-1,j]>c[i,j-1] then

set[i,j] := set[i-1,j]
else if c[i,j-1]>c[i-1,j] then

set[i,j] := set[i,j-1]
else

set[i,j] := union(set[i-1,j],set[i,j-1])

Still, there remains a problem: How much memory does the table of sets take? There are at most
1000 longest common subsequences with a maximum length of 80, and the dimension of the table is
80 × 80. This would be 512 MB if a static array is used, or a bit less if instead a table of linked lists
is used. However, with the full table it is only possible to solve nine of the ten test cases within the
memory constraint of 16 MB.

Which lines are actually needed during the computation? You can see that inside the for i:=1 to n
loop only the actual row and the previous row of the table is needed. So it is possible to use a table
with dimensions 2 × 80 and index into the table with i modulo 2.

So the final algorithm will be:

for i:=1 to n do
c[i,0] := 0

for j:=0 to m do



2003
CEOI
1010

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany
June 5 – 12, 2003

Page 3 of 3 Day 1: trip

c[0,j] := 0
set[0,j] := empty
set[1,j] := empty

for i:=1 to n do
for j:=1 to m do

if a[i] = b[j] then
c[i,j] := c[i-1,j-1]+1
set[i mod 2,j] := set[1-(i mod 2),j-1]
append a[i] to the end of all sequences in set[i mod 2,j]

else
c[i,j] := max(c[i-1,j],c[i,j-1])
if c[i-1,j]>c[i,j-1] then

set[i mod 2,j] := set[1-(i mod 2),j]
else if c[i,j-1]>c[i-1,j] then

set[i mod 2,j] := set[i mod 2,j-1]
else

set[i mod 2,j] := union(set[1 - (i mod 2),j],set[i mod
2,j-1])

print all sequences in set[n mod 2, m]

There is also a much faster solution. The idea is to use a modified version of the traceback function
described above. We try to evaluate only constructions of longest common subsequences x where
letter x[i] is the first occurence after letter x[i − 1] in both strings. All other constructions wouldn’t
lead to other longest common subsequences. To achieve this requirement breadth first search can be
used.

This may look like this:

traceback2(i,j,sequence)
if i = 0 or j = 0

add sequence to the set of longest common subsequences
return

insert (i,j) in queue
while queue is not empty

(k,l) := first element of queue
if a[k] = b[l] then

if traceback2 was not called with letter a[k] prepended to
sequence
prepend a[k] to sequence
traceback2(i-1,j-1,sequence)

else
if c[k-1,l] = c[k,l] and (k-1,l) is not already in the
queue then
append (k-1,l) to the queue

if c[k,l-1] = c[k,l] and (k,l-1) is not already in the
queue then
append (k,l-1) to the queue


