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Ticket Office

We provide an algorithm using greedy method. The algorithm works in three steps.
The first step allocates as many full-price orders as possible. The greedy method processes the orders in decreasing order of the
seat number and allocates it if possible. Denote the resulted schedule byS1.
The second step modifies the scheduleS1 to minimize the wastage. It means that it replacesp1 with an orderp for which
p < p1 andpmod Lis minimal (whereL is the number of seats in the bunch).
The third step fills in the gaps between full-price orders with half-price orders resulting the scheduleS3.
We prove thatS3 is an optimal schedule.
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Let Sbe an optimal schedule, that is a schedule resulting maximal income. We apply usual method of proving correctness of
greedy algorithm. We modifySstep by step to obtainS3 while the total income remains the same.
Let k be the number of scheduled full-price orders inS1. First we prove that there is an optimal schedule withk full-price
orders. The number of full-price orders inS is at mostk. Assume that the number of full-price orders inS is less thenk. If there
is an orderpi in S1 that does not collide with full-price order inSthenpi collides with at most 2 half-price order inS, therefore
removing them fromS and includingpi in S the total income does not decrease. See figure 2-a. Repeat this procedure until
each order inS1 collides with at least one full-price order inS. If the number of full-price orders inSstill less thank, then there
is a situation shown in figure 2-b. Remove the orders fromSthat collide with either of the two orders inS1 and include the two
orders ofS1 in S.
We may assume that the half-price orders in the schedules are shifted on the left as much as possible. Letp1 be the first seat
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Figure 2:

number of the leftmost full-price order inS1, q1 in S3 andr1 in S. Notice that the full-price order atq1 must collide with the
full-price order atr1.
If q1 < r1 then the order atq1 can not collide with half-price order inS, because in this case the waste would be less than for
the first full-price order inS3 and the second step of our algorithm would choose it. Therefore we can remove the order atr1

and include the order atq1 in S. See figure 3.
Now consider the caser1 < q1.
Let k be the largest integer such thata = k · L < r1. Moreover, letb the smallest integer such thata < b and the first half-price
order in theSend atb. If there is no such half-price order thenb= m (m is the largest seat number). See figure 4. It is clear that
the number of full-price orders inS3 betweena andb equals the number of full-price orders inSbetweena andb. Moreover, if
there is a half-price order inSending atb that there is a half-price order inS3 ata+1 and conversely. Therefore we can replace
the orders ofS located betweena andb with the orders ofS3 located betweena andb without affecting the total income.
Consider the reduced problem when the available seats arequ . . .m and the orders are those that are not scheduled up tob.
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Figure 4:

Complexity:
Time: O(n+m)
Memory: O(n+m)
Implementation

Program ticket;
Const
MaxN=100000;
MaxM=30000;

Var
N,m:longint;
L:longint;
Start,R:Array[0..MaxN] of longint;
S:Array[0..MaxM] of longint;
Sch:Array[0..MaxM] of longint;
i,ii,k,x:longint;
Lend,fn,gap,free:longint;
Sol:longint;
OutF:Text;

procedure ReadIn;
var
InFile:Text;
i,x:longint;

begin
assign(InFile,’ticket.in’); reset(InFile);
readln(InFile,m, L);
readln(InFile, N);
for i:=1 to N do begin
read(InFile, x);
Start[i]:=x;
R[i]:=i;

end {for i};
Start[0]:=0;
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Start[n+1]:=m+1;
end {ReadIn};

procedure Sort;
var
Nox:array[0..MaxM] of longint;
i,ii,j,x:longint;

begin
Nox[0]:=0;
for x:=1 to m do Nox[x]:=0;
for i:=1 to n do inc(Nox[Start[i]]);
for x:=1 to m do Nox[x]:=Nox[x]+Nox[x-1];
for i:=1 to n do begin

ii:=Start[i];
j:=Nox[ii];
R[j]:=i;
dec(Nox[ii]);

end;
R[0]:=0;
R[n+1]:=n+1;

end {Sort};

Begin {Prog}
ReadIn;
Sort;
fn:=0;
Lend:=m+1;

{1. step: allocate full-price orders}
for i:=N downto 1 do begin
ii:=R[i];
if Start[ii]+L<=Lend then begin
inc(fn);
S[fn]:=ii;
Lend:=Start[ii];

end;
end {for i};

for i:=1 to fn div 2 do begin
x:=S[i]; S[i]:=S[fn-i+1];
S[fn-i+1]:=x;

end;
{2. step: modify the schedule to minimize the wastage }
S[fn+1]:=n+1;
free:=1;
k:=1;
gap:=m;
Sol:=0;
Lend:=Start[S[1]];
for i:=1 to n do begin
if Start[R[i]]>Lend then begin
Sol:=Sol+(Start[S[k]]-free) div L+1;

3



page 4 of 4

CentralEuropeanOlympiad inInformatics

28 July – 4 August 2005 Sárospatak, Hungary
http://ceoi.inf.elte.hu

free:=Start[S[k]]+L;
inc(k);
Lend:=Start[S[k]];
gap:=m;

end;
if (free<=Start[R[i]])and((Start[R[i]]-free) mod L<gap) then begin

gap:=(Start[R[i]]-free) mod L;
S[k]:=R[i];

end;
end {for i};

Sol:=Sol+(Start[S[fn]]-free) div L;
Sol:=Sol+(m-(Start[S[fn]])+1) div L;
if Sol>n then Sol:=n;
assign(OutF, ’ticket.out’); rewrite(OutF);
writeln(OutF, Sol+fn);
writeln(OutF, Sol);

{3. step: fill in the gaps with half-price orders}
for i:=1 to m do Sch[i]:=0;
for i:=1 to fn do
for k:=Start[S[i]] to Start[S[i]]+L-1 do

Sch[k]:=S[i];

free:=1; i:=1;
while i<=n do begin
if free+L-1>m then break;
if Sch[Start[R[i]]]=R[i] then begin

inc(i); continue;
end;
k:=Sch[free+L-1];
if (Sch[free]=0)and(k=0) then begin

Sch[free]:=R[i];
free:=free+L;
inc(i);

end else
free:=Start[k]+L;

end {while i};
k:=1;
while k<=m do begin
if Sch[k]>0 then begin

writeln(OutF, Sch[k],’ ’,k);
k:=k+L;

end else begin
inc(k);

end;
end;
close(OutF);

End.
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