CEOI z00s page 1 of 4

sércapetak, Hungary

Central EuropeanOIympiad in | nformatics

28 July — 4 August 2005 Séarospatak, Hungary
http://ceoi.inf.elte.hu

28 July - 4 Augus, 2005

Ticket Office

We provide an algorithm using greedy method. The algorithm works in three steps.

The first step allocates as many full-price orders as possible. The greedy method processes the orders in decreasing order of
seat number and allocates it if possible. Denote the resulted schedsle by

The second step modifies the schedbleto minimize the wastage. It means that it replapg&swith an orderp for which

p < p1 andpmod Lis minimal (wherel is the number of seats in the bunch).

The third step fills in the gaps between full-price orders with half-price orders resulting the scBgdule

We prove tha&3 is an optimal schedule.

pl p2 p3 p4 ps

‘s N B B BB
ql q2 q3 4 q5
‘I | I Em BN

ql Q@ q3 q4 45

Figure 1:

Let Sbe an optimal schedule, that is a schedule resulting maximal income. We apply usual method of proving correctness o
greedy algorithm. We modif§ step by step to obtaif3 while the total income remains the same.

Let k be the number of scheduled full-price ordersSh First we prove that there is an optimal schedule wifill-price

orders. The number of full-price orders®is at mosk. Assume that the number of full-price ordersSis less therk. If there

is an ordenp; in S1 that does not collide with full-price order Bthenp; collides with at most 2 half-price order 8) therefore
removing them fron and includingp; in Sthe total income does not decrease. See figure 2-a. Repeat this procedure until
each order ir8l collides with at least one full-price order $ If the number of full-price orders i8 still less thark, then there

is a situation shown in figure 2-b. Remove the orders f&timat collide with either of the two orders 81 and include the two

orders ofSlin S

We may assume that the half-price orders in the schedules are shifted on the left as much as posgiblee thet first seat

Figure 2:

number of the leftmost full-price order 81, g; in S3 andry in S. Notice that the full-price order af must collide with the
full-price order atry.

If g1 < r1 then the order atj; can not collide with half-price order i, because in this case the waste would be less than for
the first full-price order irS3 and the second step of our algorithm would choose it. Therefore we can remove the ofder at
and include the order a4 in S. See figure 3.

Now consider the casg < q;.

Letk be the largest integer such tleat k- L < r1. Moreover, let the smallest integer such thek b and the first half-price
order in theSend ath. If there is no such half-price order thbr= m(mis the largest seat number). See figure 4. It is clear that
the number of full-price orders i3 betweera andb equals the number of full-price orders®betweera andb. Moreover, if
there is a half-price order iBending ab that there is a half-price order 88 ata+ 1 and conversely. Therefore we can replace
the orders oSlocated between andb with the orders o3 located betweea andb without affecting the total income.
Consider the reduced problem when the available seatg,arem and the orders are those that are not scheduled bip to



CEOI zoos page 2 of 4

sércapetak, Hungary

Central EuropearOIympiad in | nformatics

28 July — 4 August 2005 Séarospatak, Hungary
http://ceoi.inf.elte.hu

28 July - 4 Augus, 2005

I
S rl

Figure 3:

Figure 4.

Complexity:

Time: O(n+m)
Memory: O(n+ m)
Implementation

Program ticket;

Const
MaxN=100000;
MaxM=30000;

Var
N, m:longint;
L:longint;
Start,R:Array[0..MaxN] of longint;
S:Array[0..MaxM] of longint;
Sch:Array[0..MaxM] of longint;
i,1i,k,x:longint;
Lend, fn, gap, free:longint;
Sol:longint;
OutF:Text;

procedure ReadlIn;
var
InFile:Text;
i, x:longint;
begin
assign(InFile,’ticket.in’); reset(InFile);
readln(InFile,m, L);
readln(InFile, N);
for i:=1 to N do begin
read(InFile, Xx);
Start[i]:=x;

R[i]:=1i;
end {for 1i};
Start[0]:=0;



page 3 of 4
Central EuropeanOIympiad in | nformatics

28 July — 4 August 2005 Séarospatak, Hungary
http://ceoi.inf.elte.hu

28 July - 4 Augus, 2005

Start [n+l] :=m+1;
end {ReadIn};

procedure Sort;
var
Nox:array[0..MaxM] of longint;
i,1i,j,x:longint;
begin
Nox[0] :=0;
for x:=1 to m do Nox[x]:=0;
for i:=1 to n do inc(Nox[Start[i]]);
for x:=1 to m do Nox[x]:=Nox[x]+Nox[x-1];
for i:=1 to n do begin
ii:=Start[i];
j:=Nox[ii];
R[]]:=1;
dec (Nox[1i]);
end;
R[0]:=0;
R[n+1] :=n+1;
end {Sort};

Begin {Prog}
ReadlIn;
Sort;
fn:=0;
Lend:=m+1;
{1. step: allocate full-price orders}
for i:=N downto 1 do begin
ii:=R[1i];
if Start[ii]+L<=Lend then begin
inc(fn);
S[fn]:=1i1;
Lend:=Start [ii];
end;
end {for i};

for i:=1 to fn div 2 do begin
x:=S[i]; S[i]:=S[fn-i+1];
S[fn-i+1] :=x;
end;
{2. step: modify the schedule to minimize the wastage }
S[fn+l] :=n+1;
free:=1;
k:=1;
gap:=m;
S0l:=0;
Lend:=Start[S[1]];
for i:=1 to n do begin
if Start[R[i]]>Lend then begin
Sol:=Sol+ (Start[S[k]]-free) div L+1;



page 4 of 4
Central EuropeanOIympiad in | nformatics

28 July — 4 August 2005 Séarospatak, Hungary
http://ceoi.inf.elte.hu

28 July - 4 Augus, 2005

free:=Start [S[k]]+L;

inc(k);
Lend:=Start [S[k]];
gap:=m;

end;

if (free<=Start[R[i]])and((Start[R[i]]-free) mod L<gap) then begin
gap:=(Start[R[i]]-free) mod L;
S[k]:=R[i];
end;
end {for 1i};

Sol:=Sol+(Start[S[fn]]-free) div L;
Sol:=Sol+ (m-(Start[S[fn]])+1) div L;
if Sol>n then Sol:=n;
assign(OutF, ’ticket.out’); rewrite (OutF);
writeln (OutF, Sol+fn);
writeln (OutF, Sol);
{3. step: fill in the gaps with half-price orders}
for i:=1 to m do Sch[i]:=0;
for i:=1 to fn do
for k:=Start[S[i]] to Start[S[i]]+L-1 do
Schlk]:=S[i];

free:=1; i:=1;
while i<=n do begin
if free+L-1>m then break;
if SchlStart[R[1i]]]=R[1i] then begin
inc(i); continue;
end;
k:=Sch[free+lL-1];
if (Schlfree]=0)and(k=0) then begin
Schfree]:=R[1i];
free:=free+l;
inc(i);
end else
free:=Start [k]+L;
end {while 1i};
k:=1;
while k<=m do begin
if Sch[k]>0 then begin
writeln (OutF, Schlk],’” ',k);
k:=k+L;
end else begin
inc (k) ;
end;
end;
close (OutkF);
End.



